呈之前的討論,對於 WSC 問題,我們有了利用 LP solver 去對解做 deterministic rounding 及 randomized rounding 的演算法,解法的共通點是必須要先 run 過 LP solver (雖然理論上是 POLY ,實務上現行的 solver 也很有效率),但我們仍想問說,是否存在不須使用 LP solver 的演算法呢? 而這也是這講所要提到的 Primal-Dual Method 。
至於實務上的好處嘛…,節錄官方(?)說法如以下:
While linear programs are efficiently solvable, and algorithms for them are quick in practice, special purpose algorithms are often much faster
Rewrite to Dual Form
As primal-dual LP mentioned, the dual LP is
$$
\max \sum_{j=1}^{n} \alpha_j \quad s.t. \begin{cases}
\sum_{e_j \in S_i} \alpha_j \leq \text{cost}(S_i) \; \forall i \\
\alpha_j \geq 0
\end{cases}
$$
Remark:
寫出 dual form 的直觀方法是,原先的 constraint 會變 objective ,而 objective 會變 constraint 。
像這個例子為 我們想儘量 maximize 原先 constraint 中 $\underset{i: e_j \in S_i}{\sum} x_i \geq 1$ 乘上的那個係數 $\alpha_j$ ( 想讓原 objective 的下界越 tight 越好,而我們有 $j$ 個這樣的式子),但對每個 $i$ 來說,係數合不能超過原先 objective 的 $x_i$ 係數 (也就是上方的 constraint ,而我們有 $i$ 個這樣的限制)。
Correctness of Approx. Ratio
利用 Weak Duality Theorem, $\forall \, \text{feasible} \, \mathbf{x}, \mathbf{\alpha}$我們有
$$
\sum_{i=1}^m \, \text{cost}(S_i) \cdot x_i \color{red}{\geq} \sum_{(i,j): e_j
\in S_i} \, \alpha_j \cdot x_i \color{green}{\geq} \, \sum_{j=1}^{n} \, \alpha_j
$$
雖然 form 看起來簡單一些了,但要找出符合 complentary slackness 的 dual OPT 還是很難,所以我們做些 relaxation。
Relaxed Complementary Slackness
$$
\begin{cases}
\color{red}{\geq}: \forall i, \, \text{either} \, x_i = 0 \, \text{or} \,
\boxed{\color{red}{\frac{1}{A} \, \text{cost}(S_i)} \leq \sum_{j: e_j \in S_i} \alpha_j \, \leq
\text{cost}(S_i)}\\
\color{green}{\geq}: \forall j, \, \text{either} \, \alpha_j = 0 \, \text{or} \,
\boxed{\color{green}{B} \, \geq \, \sum_{i: e_j \in S_i} x_i \, \geq \, 1}
\end{cases}
$$
Then, we have
$$
\boxed{\sum_j \alpha_j \, \leq \, \sum_{i}\text{cost}(S_i) \cdot x_i \leq \color{red}{A}\color{green}{B}
\sum_{j}\alpha_j}
$$
如我們之前對題目做的假設,如果每個 element 都被 $\leq l$ 個 subset 蓋住的話,相當於是設 $A = 1, B = l$,可以 derive 出一個 $l$-approx. algorithm。
Algorithm - Primal-Dual Method
Core Concept
慢慢更動 dual solution 的 variable $\alpha_j$ 並搭配 complentary slackness (儘量去 satisfy,不行就 relax 得更鬆) ,利用此去轉換出 primal solution 。
一個可行的 Algorithm
Initially, $\alpha_j = 0 \; \forall j$
- Pick any uncovered element $e_j$
- Increase $\alpha_j$ until $\exists \, i \; s.t \; \underset{e_j \in S_i}{\sum} \alpha_j \, = \, \text{cost}(S_i)$ $\Rightarrow \, \color{green}{ S_i \, \text{is tight}}$ ($\color{red}{\text{更動 dual sol. } \, \land \, \text{搭配 C.S.}}$)
- Add all $\color{green}{\text{tight}} \, S_i$ to set cover ($\color{red}{\text{轉換出 primal sol.}}$)
Repeat above procedure until all elements are covered